
Univ.-Prof. Dr.–Ing. habil. Norbert Gronau
Lehrstuhlinhaber | Chairholder

Mail			 August-Bebel-Str. 89 | 14482 Potsdam | Germany
Visitors 	 Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam
Tel	 	 +49 331 977 3322

E-Mail 	 ngronau@lswi.de
Web	 	 lswi.de

Lehrstuhl für Wirtschaftsinformatik
Prozesse und Systeme
Universität Potsdam

Chair of Business Informatics
Processes and Systems
University of Potsdam

Einführung in die Softwarearchitektur

Architekturen betrieblicher Anwendungssysteme

Was unterscheidet eine Softwarearchitektur von einer Anwendungs- oder Systemarchitektur?

Welche Aufgaben und Verantwortlichkeiten hat der Softwarearchitekt im Entwicklungsprozess?

Warum sind klassische Architekturen (z. B. Monolith, 3-Schichten, SOA) heute oft unzureichend?

Welche Rolle spielen Qualitätsattribute (nach ISO 25010, Bass et al.) für Architekturentscheidungen?

Wie lässt sich die Ausrichtung der Architektur an Geschäftsprozessen (Business Process Alignment)
bewerten und gestalten?

Lernziele

„Architectura … constat ex … firmitate, utilitate, venustate.“
(„Architektur ist die Kombination von Festigkeit, Nützlichkeit,
Schönheit.“) Nach Vitruvius Pollio (ca. 15 v. Chr.)

Was bedeutet Architektur?

Die Vitruv-Analogie

Quelle: Vitruv, De architectura libri decem, ca. 15 v. Chr., Abbildung https://atouchofrome.com/roman-temple-architecture-explained-simply.html

Utilitas: Das Gebäude erfüllt seine Funktion.
-> Das Softwaresystem erfüllt seine
Anforderungen

Firmitas: Das Gebäude ist stabil.
-> Das Softwaresystem ist langlebig und
„stabil“/resilient gegenüber Änderungen

Venustas: Das Gebäude ist ästhetisch gestaltet.
-> Das Softwaresystem weist klare, logische
Strukturen auf.

Kernprinzip (Vitruv, De Architectura, Buch I, Kap. 3)

https://atouchofrome.com/roman-temple-architecture-explained-simply.html

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Warum Softwarearchitektur wichtig ist

Architektur bestimmt Qualitätseigenschaften eines Systems (z. B. Performance, Sicherheit,
Modifizierbarkeit) – nicht nur Funktionalität. (Bass et al., 2021)
Qualität entsteht durch Architekturentscheidungen, nicht durch einzelne Codezeilen. (Bass et al.,
2021)
Architekturentscheidungen wirken langfristig auf Wartbarkeit, Integration und Kosten. (Bass et
al., 2021)

Motivation und Einordnung

Quelle: Bass et al. 2021, Keller (2017)

Einordnung in betriebliche Anwendungssysteme

Softwarearchitektur: Struktur eines einzelnen Systems (Komponenten, Schnittstellen,
Beziehungen). (Bass et al., 2021)
(IT-)Unternehmensarchitektur: Zusammenspiel mehrerer Systeme, Prozesse und Daten im
Unternehmen (z. B. ERP, CRM, SCM).
Abgrenzung: Softwarearchitektur ist die Bauweise eines Systems, eingebettet in eine
übergeordnete Systemlandschaft. (Keller, 2017)

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Zentrale Aufgabe
Der Softwarearchitekt ist die Brücke zwischen Anforderungen und Technik. Er gestaltet die Struktur
eines Softwaresystems so, dass funktionale und nicht-funktionale Anforderungen erfüllt werden.

Rolle des Softwarearchitekten

Quelle: nach Bass, Clements & Kazman 2021; vgl. Broy 2010

Anforderungsanalyse und Übersetzung: Übersetzt
Geschäftsziele, Prozesse und QAs in technische
Strukturen.

Strukturierung und Entwurf: Definiert Komponenten,
Schnittstellen und Interaktionen im System.

Qualitätssicherung: Stellt sicher, dass
Qualitätsattribute (z. B. Performance, Wartbarkeit,
Sicherheit) erreicht werden.

Kommunikation und Moderation: Vermittelt zwischen
Entwicklern, Management und Fachexperten.

Entscheidung und Verantwortung: Trifft und
dokumentiert Architekturentscheidungen

Aufgabenbereiche

Anforde
rungen

Technik

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Definition (nach Bass et al. 2021, IEEE/SEI):

„Softwarearchitektur umfasst die grundlegenden Strukturen eines Softwaresystems, die in seinen
Komponenten, deren Beziehungen und den Prinzipien zur Gestaltung und Evolution bestehen.“

Grundbegriff Softwarearchitektur

Quelle: Bass et al. 2021

Qualitätsaspekte:

Kopplung: lose -> Systeme bleiben änderungsfreundlich.
Kohäsion: hohe innere Geschlossenheit von Komponenten.
Wartbarkeit: einfache Anpassung an neue Anforderungen.
Weitere Attribute: Performance, Sicherheit, Zuverlässigkeit.

Kernkonzepte:

Komponenten: Bausteine der Software (z. B. Module, Services).
Schnittstellen: Definieren, wie Komponenten interagieren.
Beziehungen: Daten-/Kontrollflüsse zwischen Komponenten.

Strategie
Unternehmensziele

Anwendungssysteme
ERP, CRM, SCM, HRM

Infrastruktur
Datenbanken, Netzwerke,
Cloud-Plattformen, Server

Softwarearchitektur
Monolith, SOA, MSA

Kernidee

Architektur dient nicht nur dem Entwurf von Systemen, sondern auch als gemeinsame Sprache
zwischen allen Beteiligten – Entwicklern, Architekten, Management und Fachbereichen.

Architektur als Kommunikationsplattform

Quelle: Bass et al. 2021

Architecture is the primary means of communication among stakeholders.”
- Bass, Clements & Kazman (2021)

Warum Kommunikation zentral ist:

Architektur ist ein gemeinsames Modell, das komplexe Systeme verständlich macht.
Sie schafft ein gemeinsames Vokabular für Anforderungen, Entscheidungen und Kompromisse.
Architekturentscheidungen müssen nachvollziehbar und kommunizierbar sein.
Gute Architektur ist ein Kommunikationsartefakt: Diagramme, Dokumente, Modelle.
Sie ermöglicht die Abstimmung zwischen Business-Zielen und technischer Umsetzung.

QuizApp

Einwahldaten

URL: https://quiz.lswi.de/login

Lecture Code: aba19

https://quiz.lswi.de/login

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Klassische Architektur

Quelle: Gronau 2021

Applikations-
schicht

Datenhaltungs-
schicht

Benutzungsoberfläche Web-Client

Anpassung

User Exits
Aufrufen
anderer

Programme

Schnittstellen zu anderen
Datenbanken

Programmier-
umgebung

DBMS

Applikationskern

Datenbankunabhängiger Teil

Datenbankabhängiger Teil

Benutzungsschicht

Verteilung der Systemfunktionen:

Client-Server Computing

Quelle: Gronau 2021, S. 29

Client-Server-Computing erlaubt es, die Systemfunktionen auf verschiedene Weise auf mehrere
Computer zu verteilen.

Präsentation

Verarbeitung

Datenbank-
management

Client

Server

Zentrale
Präsentation

Dezentrale
Präsentation

Dezentrale Verarbeitung
mit zentraler Speicherung

Präsentation

Verarbeitung

Datenbank-
management

Präsentation

Verarbeitung

Datenbank-
management

14

Bildplatzhalter BildplatzhalterBildplatzhalter

Hub and Spoke Service-orientierte Architektur
(SOA)

Prinzipien von Integrationsarchitekturen

Wie Systeme miteinander verbunden werden: Drei Integrationsarchitekturen im Vergleich

Quelle: Gronau 2021, S. 35

Punkt zu Punkt

Direkte Verbindung zwischen
jedem Systempaar

Individuell entwickelte
Schnittstellen

Feste Kopplung, schwer wartbar

Skalierungsproblem bei vielen
Systemen: Anzahl der
Verbindungen = n(n–1)/2

Zentrale Integrationsplattform
(Hub) als Vermittler

Systeme (Spokes) kommunizieren
nur mit dem Hub

Weniger Schnittstellen, aber:

Single Point of Failure

Transformation & Routing im Hub
nötig

Lose Kopplung durch standardisierte
Dienste (z. B. Web Services, REST APIs)

Wiederverwendbare Services für
verschiedene Prozesse

Dezentrale Kommunikation zwischen
Services

Höherer Abstimmungsbedarf, aber
große Flexibilität

15

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Definition (nach Newman 2021):
Kleine, autonome Services, die
unabhängig deployed werden
können.
Jeder Service hat eigene Logik und
eigene Datenhaltung.
Kommunikation über leichte
Schnittstellen (REST, gRPC,
Messaging).

Microservices als moderner Architekturstil

Quelle: Newman (2021)

Unabhängige Services

Service 1

Container-Management & Orchestrierung
(z. B. Kubernetes, Docker Swarm)

Benutzungsoberfläche (Client Layer)
Web Mobile

Service nService 2

API Gateway

DB 1 DB 2 DB n
Service-spezifische

Datenhaltung

Applikations-
schicht

Benutzungs-
schicht

Persistence-
Schicht

Persistence
/ Data Access

Layer

Persistence
/ Data Access

Layer

Persistence
/ Data Access

Layer

Container Runtime /
Infrastruktur-

Schicht

Prinzipien

Lose Kopplung, starke Kohäsion.
Um Geschäftsdomänen modelliert
(Domain-Driven Design).
Automatisiertes Deployment
(DevOps, CI/CD).

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

25010 – Softwarequalität

Architekturentscheidungen zielen nicht nur auf
Funktionalität, sondern auf Qualitätseigenschaften.
ISO/IEC 25010 definiert acht zentrale Kategorien von
Softwarequalität.
Diese Kategorien bilden den Rahmen für die
Bewertung von Softwarearchitekturen.
Beispiel: Caching erhöht Performance, kann aber
Wartbarkeit verringern
-> Qualitätseigenschaften stehen oft in Zielkonflikt.

Qualitätsaspekt

Quelle: Bass et al. 2021; ISO/IEC 25010

Compatibility
Functional
Suitability

Performance
Efficiency

Interaction
Capability

Reliability

Security
Maintain-

ability

Flexibility

Safety
Software-

qualität
(ISO 25010)

Vom Attribut zur Metrik
Wie Qualität messbar wird

Response Time
Throughput
Resource Utili.
Latency

Performance Maintainability

Modularity
Change Effort
Testability
Code Complexity

Vulnerability Density
Mean Time to Detect
Mean Time to Recover
Access Control Effect.

Security

Qualität wird beobachtbar und bewertbar – Grundlage für Architekturentscheidungen.

Quelle: Bass et al. 2021; ISO/IEC 25010

Qualitätsattribute beschreiben was wichtig ist (z. B. Performance, Wartbarkeit, Sicherheit).
Metriken zeigen wie gut diese Attribute erfüllt werden.

Reliability

Availability
Mean Time
Between Failures
Failure Rate

Präzise Qualitätsanforderungen

Beispiel eines Quality Attribute Scenarios (Performance)

Quelle: Bass et al. 2021; ISO/IEC 25010

Quality Attribute Scenarios (Bass et al. 2021)

Beschreiben Qualitätsanforderungen präzise:
Stimulus: Ein Nutzer sendet eine
Suchanfrage über die Weboberfläche.
Environment: Das System befindet sich unter
hoher Last (mehrere gleichzeitige
Benutzeranfragen).
Artifact: Webserver und Datenbank, die für
die Verarbeitung der Anfrage zuständig sind.
Response: Das System verarbeitet die
Anfrage und liefert eine Ergebnisliste zurück.
Response Measure: Antwortzeit ≤ 2
Sekunden für 95 % aller Anfragen.

QA-Szenario

Response Messure

Antwortzeit ≤ 2 Sek.

Präzise Qualitätsanforderungen

Beispiel: Maintainability-Metrik (Change Effort)

Quelle: Bass et al. 2021; ISO/IEC 25010

Stimulus: Eine fachliche Regel im Bestellprozess
wird geändert (z. B. neue Rabattlogik).
Environment: Laufender Betrieb, reguläre
Release-Zyklen.
Artifact: Betroffene Services im Order- und
Pricing-Bereich.
Response: Anpassung des Codes und Tests.
Response Measure: Anzahl geänderter Module
/ Services.

Berechnung Beispiel

Zwei Services müssen angepasst werden
Gesamtsystem: 10 Services

 Change Effort =
BetroffeneServices
GesamtzahlServices

Change Effort =
2

10
= 0,2

Interpretation

Niedriger Wert → gute Änderbarkeit

Hoher Wert → starke Kopplung, schlechte
Wartbarkeit

Präzise Qualitätsanforderungen

Beispiel: Reliability-Metrik (Availability)

Quelle: Bass et al. 2021; ISO/IEC 25010

Stimulus: Ein Service wird über einen Zeitraum
von 30 Tagen betrieben.
Environment: Produktivbetrieb.
Artifact: Rechnungsservice.
Response: Service ist verfügbar oder nicht
verfügbar.
Response Measure: Anteil der Zeit, in der der
Service verfügbar ist.

Berechnung Beispiel

Gesamtzeit: 720 Stunden
Ausfallzeit: Drei Stunden

 Availability =
Uptime

TotalTime

Availability =
720 − 3

720
= 0,996

Interpretation

Wert nahe 1 → hohe Zuverlässigkeit
Kritisch für kundennahe Prozesse

Präzise Qualitätsanforderungen

Beispiel: Security-Metrik (Mean Time to Recover - MTTR)

Quelle: Bass et al. 2021; ISO/IEC 25010

Stimulus: Sicherheitsvorfall (z. B. fehlerhafte
Zugriffskonfiguration).
Environment: Produktivbetrieb.
Artifact: Authentifizierungsservice.
Response: Vorfall wird erkannt und behoben.
Response Measure: Zeit bis zur vollständigen
Wiederherstellung.

Berechnung Beispiel

Drei Vorfälle mit Behebungszeiten: 1h, 2h,
3h

 MTTR =
ΣWiederherstellungszeiten

Anzahl Vorfälle

MTTR =
1 + 2 + 3

3
= 2 Stunden

Interpretation

Niedriger MTTR → hohe Sicherheits- und
Reaktionsfähigkeit
Relevant für kritische Infrastrukturen

Architekturlösungen

Quelle: Bass et al. 2021; ISO/IEC 25010

Tactics and Patterns

Beispiele:
Performance: Caching, Load Balancing
Modifiability: Schichtenarchitektur, Abstraktionen
Availability: Heartbeat, Failover
Security: Authentifizierung, Verschlüsselung

Caching Load Balancing Schichtenmodell

Quick Check 2
Vorlesung 10: Fragerunde 2

Veranstaltungs-
schlüssel:
aba19

https://quiz.lswi.de/login

https://quiz.lswi.de/login

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Warum Zerlegung?

Systeme werden zu groß und unübersichtlich -> brauchen Struktur.
Ziel: Kohäsion hoch, Kopplung niedrig, Granularität angemessen.
Grundlage für Wartbarkeit, Skalierbarkeit, Wiederverwendbarkeit.

Decomposition

Zerlegung von Systemen

Quelle: Bass et al. (2021); Evans (2003); Newman (2021)

Kohäsion

Kopplung

Granularität

Klassische Metriken

Von klassischen
Maßen zu modernen
Methoden

Domain B

Domain A Domain-Driven
Design (DDD)

Graph-/Clustering-
Ansätze

Business
Capabilities

Moderne Methoden

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Motivation:

Klassische Metriken (Kohäsion, Kopplung, Granularität) bewerten nur technische Aspekte.
Morderne, service-orientierte Anwendungssystemen unterstützen Geschäftsprozesse.
Ziel: Architektur = technische Struktur + Prozessunterstützung.

Odoo Sales Prozess: Quotation → Order → Delivery → Invoice → Payment
Zerlegung in Services wird anhand von BPA-Metriken bewertet.

Business Process Alignment (BPA)

BPA-Metriken:

Metrik Basierend auf … Bezug zur Literatur Herleitung

PSC BPMN-basierte Prozessmodellierung Daoud et al. (2020); Delgado et al. (2018) analog zu Code Coverage in der Softwarequalität
(abgedeckte Schritte ÷ alle Schritte)

BCF Capability-Mapping und Domain-Driven Design Drieschner et al. (2023); Özkan et al. (2025) analog zu Jaccard Similarity Index (Überschneidung
zwischen Service und Capability)

CIS Change-Impact-Analysen in MSA Li et al. (2025); Ortiz et al. (2023) abgeleitet aus Change Propagation Metric
(betroffene Services ÷ alle Services)

PCT Distributed Tracing / End-to-End-Monitoring Hui et al. (2025); Taibi & Systä (2019) analog zu Traceability Coverage (vollständig
nachverfolgte Instanzen ÷ alle Instanzen)

PGC Ziel-Prozess-Abgleich (EA) Zimmermann et al. (2018); Delgado et al.
(2018)

abgeleitet aus Goal Alignment Metrics (gewichteter
Mittelwert aus Alignment-Scores)

Präzise Qualitätsanforderungen

BPA-Metrik (Process Step Coverage – PSC)

Quelle: Bass et al. 2021; ISO/IEC 25010

Stimulus: Analyse eines Geschäftsprozesses (z.
B. Odoo Sales).
Environment: Modellbasierte Analyse (BPMN).
Artifact: Services, die Prozessschritte
implementieren.
Response: Prozessschritte sind einem Service
zugeordnet.
Response Measure: Anteil abgedeckter
Prozessschritte.

Berechnung Beispiel

Prozess hat 5 Schritte
4 Schritte sind Services zugeordnet

 PSC =
4
5

= 0,8

PSC =
durchServicesabgedeckteProzessschritte

alleProzessschritte
= 0,8

Interpretation

PSC = 1 → vollständige Prozessabdeckung

PSC < 1 → Prozesslücken oder implizite
Logik

Beispiel:

Odoo Sales Prozess: Quotation → Order → Delivery → Invoice → Payment
Zerlegung in Services wird anhand von BPA-Metriken bewertet.
Architekturen werden nicht nur technisch, sondern auch prozessual bewertet.
Klassische Metriken ≠ Unterstützung von Geschäftsprozessen.
In der Übung:

Zerlegung eines Systems in Services
Bewertung mit technischen und BPA-Metriken
Ziel: Architekturentscheidungen begründet vergleichen

→ Bonuspunkte für saubere Modellierung und nachvollziehbare Argumentation

Übung: Microservices & Business Process Alignment

Motivation und Einordnung
Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen
Microservices
Qualitätsaspekte und Architekturlösungen
Decomposition
Business Process Alignment
Ausblick

Softwarearchitektur ist keine einmalige Entscheidung, sondern ein kontinuierlicher
Gestaltungsprozess.
Der Nutzen von Microservices hängt stark von Prozess- und Domänenbezug ab.
Metriken helfen, Architekturentscheidungen transparent, vergleichbar und begründbar
zu machen.
Business Process Alignment gewinnt besonders bei ERP-, Plattform- und Legacy-
Migrationen an Bedeutung.
In Forschung und Praxis: Bedarf an systematischen, prozessorientierten
Bewertungsansätzen.

Ausblick

Quelle: Ortiz et al. (2023)

Ahlemann, F., Stettiner, E., Messerschmidt, M., Legner, C. (2012). Strategic Enterprise Architecture Management. Berlin, Heidelberg, New York: Springer.

Bass, L., Clements, P., & Kazman, R. (2021). Software architecture in practice. Addison-Wesley Professional.

Daoud M, El Mezouari A, Faci N, Benslimane D, Maamar Z, El Fazziki A. Towards an automatic identification of microservices from business processes. In: Proceedings of the 29th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). 2020, 42–47

Delgado, A., Ruiz, F., & García-Rodríguez de Guzmán, I. (2018). A reference model-driven architecture linking business processes and services

Dern, G. (2009). Management von IT-Archtekturen, Vieweg+Teubner.

Drieschner, C., Sensoy, M., Weking, J., & Krcmar, H. (2023). Business Capability Mining: Opportunities and Challenges.

Gronau, N. (2006). Wandlungsfähige Informationssystemarchitekturen: Nachhaltigkeit bei organisatorischem Wandel (2. Aufl). GITO-Verlag.

Gronau, N. (2023). Handbuch der ERP-Auswahl. 3. Aufl. Berlin 2023

Hanschke, I. (2023). Strategisches Management der IT-Landschaft: Ein praktischer Leitfaden für das Enterprise Architecture Management. Carl Hanser Verlag GmbH Co KG.

Hui, M., Wang, L., Li, H., Yang, R., Song, Y., Zhuang, H., ... & Li, Q. (2025). Unveiling the microservices testing methods, challenges, solutions, and solutions gaps: A systematic mapping study. Journal of
Systems and Software, 220, 112232.

Keller, W. (2017). IT-Unternehmensarchitektur, 3., überarb. u. erw. Aufl. dpunkt, Heidelberg.

Li, N., Liu, Y., Lei, M., Ma, X., & Guo, Q. (2025). Research on Evaluation Model of Microservice Transformation Based on Business Consistency. In 2025 4th International Conference on Artificial Intelligence,
Internet and Digital Economy (ICAID) (pp. 31-37). IEEE.

Ortiz, J., Torres, V., & Valderas, P. (2023). Microservice compositions based on the choreography of BPMN fragments: facing evolution issues. Computing, 105(2), 375-416.

Özkan, O., Babur, Ö., & van den Brand, M. (2025). Domain-Driven Design in software development: A systematic literature review on implementation, challenges, and effectiveness. Journal of Systems and
Software, 112537. https://doi.org/10.1016/j.jss.2025.112537

Taibi, D., & Systä, K. (2019, May). A decomposition and metric-based evaluation framework for microservices. In International Conference on Cloud Computing and Services Science (pp. 133–149). Cham:
Springer.

Zimmermann, A., Schmidt, R., Sandkuhl, K. (2018). Enterprise Composition Architecture for Micro-Granular Digital Services and Products. In B. Andersson, B. Johansson, S. Carlsson, C. Barry, M. Lang, H.
Linger, & C. Schneider (Eds.), Designing Digitalization (ISD2018 Proceedings). Lund, Sweden: Lund University. ISBN: 978-91-7753-876-9. http://aisel.aisnet.org/isd2014/proceedings2018/ISDevelopment/4.

Literatur

https://doi.org/10.1016/j.jss.2025.112537
http://aisel.aisnet.org/isd2014/proceedings2018/ISDevelopment/4

