Architekturen betrieblicher Anwendungssysteme

Einfihrung in die Softwarearchitektur

Univ.-Prof. Dr.-Ing. habil. Norbert Gronau
0 Lehrstuhlinhaber | Chairholder

Mail August-Bebel-Str. 89 | 14482 Potsdam | Germany
Visitors Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam
Tel +49 331977 3322

O O E-Mail ngronau@lswi.de
Web Iswi.de

Lernziele

= Was unterscheidet eine Softwarearchitektur von einer Anwendungs- oder Systemarchitektur?

= Welche Aufgaben und Verantwortlichkeiten hat der Softwarearchitekt im Entwicklungsprozess?

= Warum sind klassische Architekturen (z. B. Monolith, 3-Schichten, SOA) heute oft unzureichend?

= Welche Rolle spielen Qualitatsattribute (nach ISO 25010, Bass et al.) fur Architekturentscheidungen?

= Wie lasst sich die Ausrichtung der Architektur an Geschaftsprozessen (Business Process Alignment)
bewerten und gestalten?

Was bedeutet Architektur?
Die Vitruv-Analogie

Kernprinzip (Vitruv, De Architectura, Buch |, Kap. 3)

JArchitectura ... constat ex ... firmitate, utilitate, venustate.”

(,Architektur ist die Kombination von Festigkeit, Nutzlichkeit,
Schonheit.”) Nach Vitruvius Pollio (ca. 15 v. Chr.)

Firmitas: Das Gebaude ist stabil.

-> Das Softwaresystem ist langlebig und
,stabil”/resilient gegentiber Anderungen

Utilitas: Das Gebaude erflillt seine Funktion.

-> Das Softwaresystem erfullt seine
Anforderungen

Venustas: Das Gebaude ist asthetisch gestaltet.

-> Das Softwaresystem weist klare, logische
Strukturen auf.

Quelle: Vitruv, De architectura libri decem, ca. 15 v. Chr., Abbildung https://atouchofrome.com/roman-temple-architecture-explained-simply.html

https://atouchofrome.com/roman-temple-architecture-explained-simply.html

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment
Ausblick

Motivation und Einordnung

Warum Softwarearchitektur wichtig ist

= Architektur bestimmt Qualitatseigenschaften eines Systems (z. B. Performance, Sicherheit,
Modifizierbarkeit) — nicht nur Funktionalitat. (Bass et al., 2021)

= Qualitat entsteht durch Architekturentscheidungen, nicht durch einzelne Codezeilen. (Bass et al.,
2021)

= Architekturentscheidungen wirken langfristig auf Wartbarkeit, Integration und Kosten. (Bass et
al, 2021)

Einordnung in betriebliche Anwendungssysteme

= Softwarearchitektur: Struktur eines einzelnen Systems (Komponenten, Schnittstellen,
Beziehungen). (Bass et al., 2021)

= (IT-)Unternehmensarchitektur: Zusammenspiel mehrerer Systeme, Prozesse und Daten im
Unternehmen (z. B. ERP, CRM, SCM).

= Abgrenzung: Softwarearchitektur ist die Bauweise eines Systems, eingebettet in eine
Ubergeordnete Systemlandschaft. (Keller, 2017)

Quelle: Bass et al. 2021, Keller (2017)

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment

Ausblick

Rolle des Softwarearchitekten

Zentrale Aufgabe

Der Softwarearchitekt ist die Brlicke zwischen Anforderungen und Technik. Er gestaltet die Struktur

eines Softwaresystems so, dass funktionale und nicht-funktionale Anforderungen erfullt werden.

Aufgabenbereiche

Anforderungsanalyse und Ubersetzung: Ubersetzt
Geschaftsziele, Prozesse und QAs in technische
Strukturen.

Strukturierung und Entwurf: Definiert Komponenten,
Schnittstellen und Interaktionen im System.

Qualitatssicherung: Stellt sicher, dass
Qualitatsattribute (z. B. Performance, Wartbarkeit,
Sicherheit) erreicht werden.

Kommunikation und Moderation: Vermittelt zwischen
Entwicklern, Management und Fachexperten.

Entscheidung und Verantwortung: Trifft und
dokumentiert Architekturentscheidungen

Quelle: nach Bass, Clements & Kazman 2021; vgl. Broy 2010

~ R
Anforde

rungen

. _J

4 R
Technik
_ Y

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment

Ausblick

Grundbegriff Softwarearchitektur

Definition (hach Bass et al. 2021, IEEE/SEI):

= ,Softwarearchitektur umfasst die grundlegenden Strukturen eines Softwaresystems, die in seinen
Komponenten, deren Beziehungen und den Prinzipien zur Gestaltung und Evolution bestehen’

Kernkonzepte:
= Komponenten: Bausteine der Software (z. B. Module, Services). Strategie R
= Schnittstellen: Definieren, wie Komponenten interagieren. s Unternehmensziele)

= Beziehungen: Daten-/Kontrollflisse zwischen Komponenten. " Anwendungssysteme

_ ERP, CRM, SCM, HRM)

= Kohasion: hohe innere Geschlossenheit von Komponenten. e e
Infrastruktur

Datenbanken, Netzwerke,
= Weitere Attribute: Performance, Sicherheit, Zuverlassigkeit. s Cloud-Plattformen, Server

Qualitatsaspekte:

= Kopplung: lose -> Systeme bleiben anderungsfreundlich.

= Wartbarkeit: einfache Anpassung an neue Anforderungen.

Quelle: Bass et al. 2021

Architektur als Kommunikationsplattform

Kernidee

= Architektur dient nicht nur dem Entwurf von Systemen, sondern auch als gemeinsame Sprache
zwischen allen Beteiligten - Entwicklern, Architekten, Management und Fachbereichen.

Warum Kommunikation zentral ist:

= Architektur ist ein gemeinsames Modell, das komplexe Systeme verstandlich macht.
= Sie schafft ein gemeinsames Vokabular fir Anforderungen, Entscheidungen und Kompromisse.

= Architekturentscheidungen mussen nachvollziehbar und kommunizierbar sein.
= Gute Architektur ist ein Kommunikationsartefakt: Diagramme, Dokumente, Modelle.
= Sie ermoglicht die Abstimmung zwischen Business-Zielen und technischer Umsetzung.

Architecture is the primary means of communication among stakeholders.”
- Bass, Clements & Kazman (2021)

Quelle: Bass et al. 2021

QuizApp

Einwahldaten

= URL: https://quiz.lswi.de/login

= Lecture Code: abal19

e | : . 2
=t Lehrstuhl fir Wirtschaftsinformatik

B _EEE Prozesse und Systeme
HEE N) A0
mmmmm Universitdt Potsdam

https://quiz.lswi.de/login

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment

Ausblick

Klassische Architektur

Benutzungsschicht [

Applikations-
schicht

Datenhaltungs-
schicht

Quelle: Gronau 2021

Benutzungsoberflache J (Web-Client J
4 N\ N R
Applikationskern
. Aufrufen
Programmier- . : :
umgebung Datenbankunabhangiger Teil anderer User Exits
Programme
Datenbankabhangiger Teil

- J JAS Y

Schnlttstellen zu anderen

DIEkIE Datenbanken

iiiiii

Anpassung

Verteilung der Systemfunktionen:

Client-Server Computing

Zentrale Dezentrale Dezentrale Verarbeitung
Prasentation Prasentation mit zentraler Speicherung
Client i
en ..) . .
€ Prasentation Prasentation
A i
Verarbeitung
X 4 A
Prasentation
\ 4
Verarbeitung Verarbeitung v
Datenbank- Datenbank- Datenbank-
mana%ement mana%ement management
Y /Q\
Server . D 2
N~ N~ N~

Client-Server-Computing erlaubt es, die Systemfunktionen auf verschiedene Weise auf mehrere
Computer zu verteilen.

Quelle: Gronau 2021, S. 29 14

Prinzipien von Integrationsarchitekturen

Wie Systeme miteinander verbunden werden: Drei Integrationsarchitekturen im Vergleich

0

’ —_—

- -

Service-orientierte Architektur

Punkt zu Punkt Hub and Spoke
P (SOA)
= Direkte Verbindung zwischen = Zentrale Integrationsplattform = Lose Kopplung durch standardisierte
jedem Systempaar (Hub) als Vermittler Dienste (z.B. Web Services, REST APlIs)
= Individuell entwickelte = Systeme (Spokes) kommunizieren = Wiederverwendbare Services fir
Schnittstellen nur mit dem Hub verschiedene Prozesse
= Feste Kopplung, schwer wartbar = Weniger Schnittstellen, aber: s Dezentrale Kommunikation zwischen
= Skalierungsproblem bei vielen = Single Point of Failure Services
Systemen: Anzahl der = Transformation & Routing im Hup = Hoherer Abstimmungsbedarf, aber
Verbindungen = n(n-1)/2 nétig grol3e Flexibilitat

Quelle: Gronau 2021, S. 35 5

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment

Ausblick

Microservices als moderner Architekturstil

Definition (hach Newman 2021):

= Kleine, autonome Services, die
unabhangig deployed werden

konnen.

= Jeder Service hat eigene Logik und
eigene Datenhaltung.

= Kommunikation uber leichte
Schnittstellen (REST, gRPC,

Messaging).

Prinzipien

= Lose Kopplung, starke Kohasion.

= Um Geschaftsdomanen modelliert
(Domain-Driven Design).

= Automatisiertes Deployment

(DevOps, CI/CD).

Quelle: Newman (2021)

Benutzungs-
schicht

Applikations-
schicht

Persistence-
Schicht

Service-spezifische
Datenhaltung

Container Runtime /
Infrastruktur-
Schicht

f Benutzungsoberflache (Client Layer) A

L web @ Mobile (])

e)
AP| Gateway

_ _J

o mm— — — — — E— E— E— E— E—— - E—— E— E—— E— .

Unabhangige Services

(Service 1 J(Service 2 J(Service n J
Persistence Persistence Persistence
/ Data Access / Data Access / Data Access
Layer Layer Layer

Container-Management & Orchestrierung
(z. B. Kubernetes, Docker Swarm)

oxe

Motivation und Einordnung

Rolle des Softwarearchitekten

Grundbegriffe Softwarearchitektur

Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlosungen
Decomposition

Business Process Alignment

Ausblick

Qualitatsaspekt

RSN
IS 25010 - Softwarequalitat

NS

= Architekturentscheidungen zielen nicht nur auf
Funktionalitat, sondern auf Qualitatseigenschaften.

= ISO/IEC 25010 definiert acht zentrale Kategorien von
Softwarequalitat.

= Diese Kategorien bilden den Rahmen fir die
Bewertung von Softwarearchitekturen.

Functional
Suitability § Compatibility

Reliability

Safety

Software-

qualitat
(IS0 25010)

Interaction

= Beispiel: Caching erhoht Performance, kann aber Capability

Wartbarkeit verringern
-> Qualitatseigenschaften stehen oft in Zielkonflikt.

Flexibility

Performance

Security

Maintain-
ability

Quelle: Bass et al. 2021; ISO/IEC 25010

Vom Attribut zur Metrik
Wie Qualitat messbar wird

= Qualitatsattribute beschreiben was wichtig ist (z. B. Performance, Wartbarkeit, Sicherheit).
= Metriken zeigen wie gut diese Attribute erflllt werden.

o 9 <
Performance Maintainability Security Reliability
= ResponseTime = Modularity = Vulnerability Density = Availability
= Throughput = Change Effort = Mean Time to Detect = MeanTime
= Resource Utili. = Testability = Mean Time to Recover Between Failures
&Latency = Code Complexity = Access Control Effect. = Failure Rate j

Qualitat wird beobachtbar und bewertbar - Grundlage fir Architekturentscheidungen.

Quelle: Bass et al. 2021; ISO/IEC 25010

Prazise Qualitatsanforderungen

Beispiel eines Quality Attribute Scenarios (Performance)

Quality Attribute Scenarios (Bass et al. 2021) QA-Szenario

= Beschreiben Qualitatsanforderungen prazise: O s R

= Stimulus: Ein Nutzer sendet eine
Suchanfrage Uber die Weboberflache.

_/
= Environment: Das System befindet sich unter —_—
hoher Last (mehrere gleichzeitige l
Benutzeranfragen). p \
= Artifact: Webserver und Datenbank, die fur
die Verarbeitung der Anfrage zustandig sind.
\ y

= Response: Das System verarbeitet die |

Anfrage und liefert eine Ergebnisliste zuriick.
Response Messure

= Response Measure: Antwortzeit < 2
Sekunden flr 95 % aller Anfragen. (Antwortzeit < 2 Sek.)

Quelle: Bass et al. 2021; ISO/IEC 25010

Prazise Qualitatsanforderungen
Beispiel: Maintainability-Metrik (Change Effort)

= Stimulus: Eine fachliche Regel im Bestellprozess =~ Berechnung Beispiel

wird geandert (z. B. neue Rabattlogik).

: , . = Zwei Services mussen angepasst werden
= Environment: Laufender Betrieb, requlare

Release-Zyklen. = Gesamtsystem: 10 Services

o Ar.ti.fact: Bet.roffene Services im Order- und Change Effort = BetroffeneServices
Pricing-Bereich. GesamtzahlServices
= Response: Anpassung des Codes und Tests. 2
= Response Measure: Anzahl geanderter Module Change Effort = 10 =0,2
/ Services.

Interpretation

= Niedriger Wert = gute Anderbarkeit

= Hoher Wert — starke Kopplung, schlechte
Wartbarkeit

Quelle: Bass et al. 2021; ISO/IEC 25010

Prazise Qualitatsanforderungen
Beispiel: Reliability-Metrik (Availability)

Stimulus: Ein Service wird Uber einen Zeitraum Berechnung Beispiel

von 30 Tagen betrieben. ,
= Gesamtzeit: 720 Stunden

= Ausfallzeit: Drei Stunden

Environment: Produktivbetrieb.
Artifact: Rechnungsservice.

Upti
Response: Service ist verfligbar oder nicht Availability = prime
verfligbar. TotalTime
: i it, i 720 — 3
Response Measure: Anteil der Zeit, in der der Availability = — 0.996

Service verfugbar ist.

Interpretation

= Wert nahe 1 = hohe Zuverlassigkeit
= Kritisch fir kundennahe Prozesse

Quelle: Bass et al. 2021; ISO/IEC 25010

Prazise Qualitatsanforderungen
Beispiel: Security-Metrik (Mean Time to Recover - MTTR)

= Stimulus: Sicherheitsvorfall (z. B. fehlerhafte Berechnung Beispiel
Zugriffskonfiguration). .) _ .
] , , = Drei Vorfalle mit Behebungszeiten: 1h, 2h,
= Environment: Produktivbetrieb. 3h

= Artifact: Authentifizierungsservice. Y Wiederherstellungszeiten

= Response: Vorfall wird erkannt und behoben. MTTR = -
o o Anzahl Vorfalle
= Response Measure: Zeit bis zur vollstandigen
; l1+2+3
Wiederherstellung. MTTR = — 7 stunden
3

Interpretation

= Niedriger MTTR — hohe Sicherheits- und
Reaktionsfahigkeit

= Relevant fur kritische Infrastrukturen

Quelle: Bass et al. 2021; ISO/IEC 25010

Architekturlosungen

Tactics and Patterns

= Beispiele:
= Performance: Caching, Load Balancing
= Modifiability: Schichtenarchitektur, Abstraktionen
= Availability: Heartbeat, Failover
= Security: Authentifizierung, Verschllsselung

> ()

Ss~—0[

N

Load Balancing Schichtenmodell

Caching

Quelle: Bass et al. 2021; ISO/IEC 25010

Quick Check 2
Vorlesung 10: Fragerunde 2

@ Auditorium Quiz App

STUDENT

E Veranstaltungs-
|$ schllssel:

g abal9

https://quiz.Iswi.de/login

https://quiz.lswi.de/login

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment

Ausblick

Decomposition

Zerlegung von Systemen

Warum Zerlegung?

= Systeme werden zu grof3 und unubersichtlich -> brauchen Struktur.
= Ziel: Kohasion hoch, Kopplung niedrig, Granularitat angemessen.
= Grundlage fur Wartbarkeit, Skalierbarkeit, Wiederverwendbarkeit.

Moderne Methoden

Klassische Metriken

Domain A Domain-Driven
L Domain B Design (DDD)
Granularitat
| : 1

Kopplung [j [j

Business
Capabilities

Graph-/Clustering-
Ansatze

Quelle: Bass et al. (2021); Evans (2003); Newman (2021)

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment

Ausblick

Business Process Alignment (BPA)

Motivation:

= Klassische Metriken (Kohasion, Kopplung, Granularitat) bewerten nur technische Aspekte.

= Morderne, service-orientierte Anwendungssystemen unterstitzen Geschaftsprozesse.

= Ziel: Architektur = technische Struktur + Prozessunterstutzung.

= (QOdoo Sales Prozess: Quotation = Order — Delivery = Invoice = Payment

= Zerlegung in Services wird anhand von BPA-Metriken bewertet.

BPA-Metriken:

Metrik

Basierend auf...

Bezug zur Literatur

Herleitung

PSC

BPMN-basierte Prozessmodellierung

Daoud et al. (2020); Delgado et al. (2018)

analog zu Code Coverage in der Softwarequalitat
(abgedeckte Schritte + alle Schritte)

analog zu Jaccard Similarity Index (Uberschneidung

(2018)

BCF |Capability-Mapping und Domain-Driven Design |Drieschner et al. (2023); Ozkan et al. (2025) zwischen Service und Capability)

C1S |Change-Impact-Analysen in MSA Li et al. (2025); Ortiz et al. (2023) abgeleitet aus Change Propagation Metric
(betroffene Services + alle Services)

PCT |Distributed Tracing / End-to-End-Monitoring Hui et al. (2025); Taibi & Systa (2019) analog zu Traceability Coverage (vollstandig
nachverfolgte Instanzen =+ alle Instanzen)

PGC |Ziel-Prozess-Abgleich (EA) Zimmermann et al. (2018); Delgado et al. abgeleitet aus Goal Alignment Metrics (gewichteter

Mittelwert aus Alignment-Scores)

Prazise Qualitatsanforderungen
BPA-Metrik (Process Step Coverage - PSC)

= Stimulus: Analyse eines Geschaftsprozesses (z. Berechnung Beispiel
B. Odoo Sales).

. . = Prozess hat 5 Schritte
= Environment: Modellbasierte Analyse (BPMN).

: , , , = 4 Schritte sind Services zugeordnet
= Artifact: Services, die Prozessschritte

implementieren. PSC — i = 0,8
= Response: Prozessschritte sind einem Service

zugeord net. beC — durchServicesabgedeckteProzessschritte 08
= Response Measure: Anteil abgedeckter alleProzessschritte

Prozessschritte. .
Interpretation

= PSC=1 — vollstandige Prozessabdeckung

= PSC< 1 — Prozesslucken oder implizite
_Logik

Quelle: Bass et al. 2021; ISO/IEC 25010

Ubung: Microservices & Business Process Alignment

Beispiel:

Odoo Sales Prozess: Quotation — Order — Delivery = Invoice = Payment
Zerlegung in Services wird anhand von BPA-Metriken bewertet.

Architekturen werden nicht nur technisch, sondern auch prozessual bewertet.
Klassische Metriken # Unterstitzung von Geschaftsprozessen.

In der Ubung:

= Zerlegung eines Systems in Services

= Bewertung mit technischen und BPA-Metriken

= Ziel: Architekturentscheidungen begriindet vergleichen

— Bonuspunkte flir saubere Modellierung und nachvollziehbare Argumentation

Motivation und Einordnung

Rolle des Softwarearchitekten
Grundbegriffe Softwarearchitektur
Klassische Architekturen

Microservices

Qualitatsaspekte und Architekturlésungen
Decomposition

Business Process Alignment
Ausblick

Ausblick

= Softwarearchitektur ist keine einmalige Entscheidung, sondern ein kontinuierlicher
Gestaltungsprozess.

= Der Nutzen von Microservices hangt stark von Prozess- und Domanenbezug ab.

= Metriken helfen, Architekturentscheidungen transparent, vergleichbar und begriindbar
zU machen.

= Business Process Alignment gewinnt besonders bei ERP-, Plattform- und Legacy-
Migrationen an Bedeutung.

= In Forschung und Praxis: Bedarf an systematischen, prozessorientierten
Bewertungsansatzen.

Quelle: Ortiz et al. (2023)

Literatur

Ahlemann, F,, Stettiner, E., Messerschmidt, M., Legner, C. (2012). Strategic Enterprise Architecture Management. Berlin, Heidelberg, New York: Springer.
Bass, L., Clements, P,, & Kazman, R. (2021). Software architecture in practice. Addison-Wesley Professional.

Daoud M, El Mezouari A, Faci N, Benslimane D, Maamar Z, El Fazziki A. Towards an automatic identification of microservices from business processes. In: Proceedings of the 29th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). 2020, 42-47

Delgado, A., Ruiz, F,, & Garcia-Rodriguez de Guzman, I. (2018). A reference model-driven architecture linking business processes and services

Dern, G. (2009). Management von IT-Archtekturen, Vieweg+Teubner.

Drieschner, C., Sensoy, M., Weking, J., & Krcmar, H. (2023). Business Capability Mining: Opportunities and Challenges.

Gronau, N. (2006). Wandlungsfahige Informationssystemarchitekturen: Nachhaltigkeit bei organisatorischem Wandel (2. Aufl). GITO-Verlag.

Gronau, N. (2023). Handbuch der ERP-Auswahl. 3. Aufl. Berlin 2023

Hanschke, I. (2023). Strategisches Management der IT-Landschaft: Ein praktischer Leitfaden fur das Enterprise Architecture Management. Carl Hanser Verlag GmbH Co KG.

Hui, M., Wang, L., Li, H., Yang, R., Song, Y., Zhuang, H., ... & Li, Q. (2025). Unveiling the microservices testing methods, challenges, solutions, and solutions gaps: A systematic mapping study. Journal of
Systems and Software, 220, 112232.

Keller, W. (2017). IT-Unternehmensarchitektur, 3., iberarb. u. erw. Aufl. dpunkt, Heidelberg.

Li, N., Liu, Y., Lei, M., Ma, X., & Guo, Q. (2025). Research on Evaluation Model of Microservice Transformation Based on Business Consistency. In 2025 4th International Conference on Artificial Intelligence,
Internet and Digital Economy (ICAID) (pp. 31-37). IEEE.

Ortiz, J., Torres, V., & Valderas, P. (2023). Microservice compositions based on the choreography of BPMN fragments: facing evolution issues. Computing, 105(2), 375-416.

Ozkan, O., Babur, O., & van den Brand, M. (2025). Domain-Driven Design in software development: A systematic literature review on implementation, challenges, and effectiveness. Journal of Systems and
Software, 112537. https://doi.org/10.1016/].jss.2025.112537

Taibi, D., & Systa, K. (2019, May). A decomposition and metric-based evaluation framework for microservices. In International Conference on Cloud Computing and Services Science (pp. 133-149). Cham:
Springer.

Zimmermann, A., Schmidt, R., Sandkuhl, K. (2018). Enterprise Composition Architecture for Micro-Granular Digital Services and Products. In B. Andersson, B. Johansson, S. Carlsson, C. Barry, M. Lang, H.
Linger, & C. Schneider (Eds.), Designing Digitalization (ISD2018 Proceedings). Lund, Sweden: Lund University. ISBN: 978-91-7753-876-9. http://aisel.aisnet.org/isd2014/proceedings2018/ISDevelopment/4.

https://doi.org/10.1016/j.jss.2025.112537
http://aisel.aisnet.org/isd2014/proceedings2018/ISDevelopment/4

