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Lernziele

= Was unterscheidet eine Softwarearchitektur von einer Anwendungs- oder Systemarchitektur?

= Welche Aufgaben und Verantwortlichkeiten hat der Softwarearchitekt im Entwicklungsprozess?

= Warum sind klassische Architekturen (z. B. Monolith, 3-Schichten, SOA) heute oft unzureichend?

= Welche Rolle spielen Qualitatsattribute (nach ISO 25010, Bass et al.) fur Architekturentscheidungen?

= Wie lasst sich die Ausrichtung der Architektur an Geschaftsprozessen (Business Process Alignment)
bewerten und gestalten?



Was bedeutet Architektur?
Die Vitruv-Analogie

Kernprinzip (Vitruv, De Architectura, Buch |, Kap. 3)

JArchitectura ... constat ex ... firmitate, utilitate, venustate.”

(,Architektur ist die Kombination von Festigkeit, Nutzlichkeit,
Schonheit.”) Nach Vitruvius Pollio (ca. 15 v. Chr.)

Firmitas: Das Gebaude ist stabil.

-> Das Softwaresystem ist langlebig und
,stabil”/resilient gegentiber Anderungen

Utilitas: Das Gebaude erflillt seine Funktion.

-> Das Softwaresystem erfullt seine
Anforderungen

Venustas: Das Gebaude ist asthetisch gestaltet.

-> Das Softwaresystem weist klare, logische
Strukturen auf.

Quelle: Vitruv, De architectura libri decem, ca. 15 v. Chr., Abbildung https://atouchofrome.com/roman-temple-architecture-explained-simply.html
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Motivation und Einordnung

Warum Softwarearchitektur wichtig ist

= Architektur bestimmt Qualitatseigenschaften eines Systems (z. B. Performance, Sicherheit,
Modifizierbarkeit) — nicht nur Funktionalitat. (Bass et al., 2021)

= Qualitat entsteht durch Architekturentscheidungen, nicht durch einzelne Codezeilen. (Bass et al.,
2021)

= Architekturentscheidungen wirken langfristig auf Wartbarkeit, Integration und Kosten. (Bass et
al, 2021)

Einordnung in betriebliche Anwendungssysteme

= Softwarearchitektur: Struktur eines einzelnen Systems (Komponenten, Schnittstellen,
Beziehungen). (Bass et al., 2021)

= (IT-)Unternehmensarchitektur: Zusammenspiel mehrerer Systeme, Prozesse und Daten im
Unternehmen (z. B. ERP, CRM, SCM).

= Abgrenzung: Softwarearchitektur ist die Bauweise eines Systems, eingebettet in eine
Ubergeordnete Systemlandschaft. (Keller, 2017)

Quelle: Bass et al. 2021, Keller (2017)
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Rolle des Softwarearchitekten

Zentrale Aufgabe

Der Softwarearchitekt ist die Brlicke zwischen Anforderungen und Technik. Er gestaltet die Struktur

eines Softwaresystems so, dass funktionale und nicht-funktionale Anforderungen erfullt werden.

Aufgabenbereiche

Anforderungsanalyse und Ubersetzung: Ubersetzt
Geschaftsziele, Prozesse und QAs in technische
Strukturen.

Strukturierung und Entwurf: Definiert Komponenten,
Schnittstellen und Interaktionen im System.

Qualitatssicherung: Stellt sicher, dass
Qualitatsattribute (z. B. Performance, Wartbarkeit,
Sicherheit) erreicht werden.

Kommunikation und Moderation: Vermittelt zwischen
Entwicklern, Management und Fachexperten.

Entscheidung und Verantwortung: Trifft und
dokumentiert Architekturentscheidungen

Quelle: nach Bass, Clements & Kazman 2021; vgl. Broy 2010
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Grundbegriff Softwarearchitektur

Definition (hach Bass et al. 2021, IEEE/SEI):

= ,Softwarearchitektur umfasst die grundlegenden Strukturen eines Softwaresystems, die in seinen
Komponenten, deren Beziehungen und den Prinzipien zur Gestaltung und Evolution bestehen’

Kernkonzepte:
= Komponenten: Bausteine der Software (z. B. Module, Services). Strategie R
= Schnittstellen: Definieren, wie Komponenten interagieren. s Unternehmensziele )

= Beziehungen: Daten-/Kontrollflisse zwischen Komponenten. " Anwendungssysteme

_ ERP, CRM, SCM, HRM )

= Kohasion: hohe innere Geschlossenheit von Komponenten. e e
Infrastruktur

Datenbanken, Netzwerke,
= Weitere Attribute: Performance, Sicherheit, Zuverlassigkeit. s Cloud-Plattformen, Server

Qualitatsaspekte:

= Kopplung: lose -> Systeme bleiben anderungsfreundlich.

= Wartbarkeit: einfache Anpassung an neue Anforderungen.

Quelle: Bass et al. 2021



Architektur als Kommunikationsplattform

Kernidee

= Architektur dient nicht nur dem Entwurf von Systemen, sondern auch als gemeinsame Sprache
zwischen allen Beteiligten - Entwicklern, Architekten, Management und Fachbereichen.

Warum Kommunikation zentral ist:

= Architektur ist ein gemeinsames Modell, das komplexe Systeme verstandlich macht.
= Sie schafft ein gemeinsames Vokabular fir Anforderungen, Entscheidungen und Kompromisse.

= Architekturentscheidungen mussen nachvollziehbar und kommunizierbar sein.
= Gute Architektur ist ein Kommunikationsartefakt: Diagramme, Dokumente, Modelle.
= Sie ermoglicht die Abstimmung zwischen Business-Zielen und technischer Umsetzung.

Architecture is the primary means of communication among stakeholders.”
- Bass, Clements & Kazman (2021)

Quelle: Bass et al. 2021
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Klassische Architektur

Benutzungsschicht [

Applikations-
schicht

Datenhaltungs-
schicht

Quelle: Gronau 2021
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Verteilung der Systemfunktionen:

Client-Server Computing

Zentrale Dezentrale Dezentrale Verarbeitung
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Client-Server-Computing erlaubt es, die Systemfunktionen auf verschiedene Weise auf mehrere
Computer zu verteilen.

Quelle: Gronau 2021, S. 29 14



Prinzipien von Integrationsarchitekturen

Wie Systeme miteinander verbunden werden: Drei Integrationsarchitekturen im Vergleich

0

’ —_—

- -

Service-orientierte Architektur

Punkt zu Punkt Hub and Spoke
P (SOA)
= Direkte Verbindung zwischen = Zentrale Integrationsplattform = Lose Kopplung durch standardisierte
jedem Systempaar (Hub) als Vermittler Dienste (z.B. Web Services, REST APlIs)
= Individuell entwickelte = Systeme (Spokes) kommunizieren = Wiederverwendbare Services fir
Schnittstellen nur mit dem Hub verschiedene Prozesse
= Feste Kopplung, schwer wartbar = Weniger Schnittstellen, aber: s Dezentrale Kommunikation zwischen
= Skalierungsproblem bei vielen = Single Point of Failure Services
Systemen: Anzahl der = Transformation & Routing im Hup = Hoherer Abstimmungsbedarf, aber
Verbindungen = n(n-1)/2 nétig grol3e Flexibilitat

Quelle: Gronau 2021, S. 35 5
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Microservices als moderner Architekturstil

Definition (hach Newman 2021):

= Kleine, autonome Services, die
unabhangig deployed werden

konnen.

= Jeder Service hat eigene Logik und
eigene Datenhaltung.

= Kommunikation uber leichte
Schnittstellen (REST, gRPC,

Messaging).

Prinzipien

= Lose Kopplung, starke Kohasion.

= Um Geschaftsdomanen modelliert
(Domain-Driven Design).

= Automatisiertes Deployment

(DevOps, CI/CD).

Quelle: Newman (2021)
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Qualitatsaspekt

RSN
IS 25010 - Softwarequalitat

NS

= Architekturentscheidungen zielen nicht nur auf
Funktionalitat, sondern auf Qualitatseigenschaften.

= ISO/IEC 25010 definiert acht zentrale Kategorien von
Softwarequalitat.

= Diese Kategorien bilden den Rahmen fir die
Bewertung von Softwarearchitekturen.

Functional
Suitability § Compatibility

Reliability

Safety

Software-

qualitat
(IS0 25010)

Interaction

= Beispiel: Caching erhoht Performance, kann aber Capability

Wartbarkeit verringern
-> Qualitatseigenschaften stehen oft in Zielkonflikt.

Flexibility

Performance

Security

Maintain-
ability

Quelle: Bass et al. 2021; ISO/IEC 25010



Vom Attribut zur Metrik
Wie Qualitat messbar wird

= Qualitatsattribute beschreiben was wichtig ist (z. B. Performance, Wartbarkeit, Sicherheit).
= Metriken zeigen wie gut diese Attribute erflllt werden.

o 9 <
Performance Maintainability Security Reliability
= ResponseTime = Modularity = Vulnerability Density = Availability
= Throughput = Change Effort = Mean Time to Detect = MeanTime
= Resource Utili. = Testability = Mean Time to Recover Between Failures
&Latency = Code Complexity = Access Control Effect. = Failure Rate j

Qualitat wird beobachtbar und bewertbar - Grundlage fir Architekturentscheidungen.

Quelle: Bass et al. 2021; ISO/IEC 25010



Prazise Qualitatsanforderungen

Beispiel eines Quality Attribute Scenarios (Performance)

Quality Attribute Scenarios (Bass et al. 2021) QA-Szenario

= Beschreiben Qualitatsanforderungen prazise: O s R

= Stimulus: Ein Nutzer sendet eine
Suchanfrage Uber die Weboberflache.

_/
= Environment: Das System befindet sich unter —_—
hoher Last (mehrere gleichzeitige l
Benutzeranfragen). p \
= Artifact: Webserver und Datenbank, die fur
die Verarbeitung der Anfrage zustandig sind.
\ y

= Response: Das System verarbeitet die |

Anfrage und liefert eine Ergebnisliste zuriick.
Response Messure

= Response Measure: Antwortzeit < 2
Sekunden flr 95 % aller Anfragen. ( Antwortzeit < 2 Sek. )

Quelle: Bass et al. 2021; ISO/IEC 25010



Prazise Qualitatsanforderungen
Beispiel: Maintainability-Metrik (Change Effort)

= Stimulus: Eine fachliche Regel im Bestellprozess =~ Berechnung Beispiel

wird geandert (z. B. neue Rabattlogik).

: , . = Zwei Services mussen angepasst werden
= Environment: Laufender Betrieb, requlare

Release-Zyklen. = Gesamtsystem: 10 Services

o Ar.ti.fact: Bet.roffene Services im Order- und Change Effort = BetroffeneServices
Pricing-Bereich. GesamtzahlServices
= Response: Anpassung des Codes und Tests. 2
= Response Measure: Anzahl geanderter Module Change Effort = 10 =0,2
/ Services.

Interpretation

= Niedriger Wert = gute Anderbarkeit

= Hoher Wert — starke Kopplung, schlechte
Wartbarkeit

Quelle: Bass et al. 2021; ISO/IEC 25010



Prazise Qualitatsanforderungen
Beispiel: Reliability-Metrik (Availability)

Stimulus: Ein Service wird Uber einen Zeitraum Berechnung Beispiel

von 30 Tagen betrieben. ,
= Gesamtzeit: 720 Stunden

= Ausfallzeit: Drei Stunden

Environment: Produktivbetrieb.
Artifact: Rechnungsservice.

Upti
Response: Service ist verfligbar oder nicht Availability = prime
verfligbar. TotalTime
: i it, i 720 — 3
Response Measure: Anteil der Zeit, in der der Availability = — 0.996

Service verfugbar ist.

Interpretation

= Wert nahe 1 = hohe Zuverlassigkeit
= Kritisch fir kundennahe Prozesse

Quelle: Bass et al. 2021; ISO/IEC 25010



Prazise Qualitatsanforderungen
Beispiel: Security-Metrik (Mean Time to Recover - MTTR)

= Stimulus: Sicherheitsvorfall (z. B. fehlerhafte Berechnung Beispiel
Zugriffskonfiguration). . ) _ .
] , , = Drei Vorfalle mit Behebungszeiten: 1h, 2h,
= Environment: Produktivbetrieb. 3h

= Artifact: Authentifizierungsservice. Y Wiederherstellungszeiten

= Response: Vorfall wird erkannt und behoben. MTTR = -
o o Anzahl Vorfalle
= Response Measure: Zeit bis zur vollstandigen
; l1+2+3
Wiederherstellung. MTTR = — 7 stunden
3

Interpretation

= Niedriger MTTR — hohe Sicherheits- und
Reaktionsfahigkeit

= Relevant fur kritische Infrastrukturen

Quelle: Bass et al. 2021; ISO/IEC 25010



Architekturlosungen

Tactics and Patterns

= Beispiele:
= Performance: Caching, Load Balancing
= Modifiability: Schichtenarchitektur, Abstraktionen
= Availability: Heartbeat, Failover
= Security: Authentifizierung, Verschllsselung

> ()

Ss~—0[

N

Load Balancing Schichtenmodell

Caching

Quelle: Bass et al. 2021; ISO/IEC 25010
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Decomposition

Zerlegung von Systemen

Warum Zerlegung?

= Systeme werden zu grof3 und unubersichtlich -> brauchen Struktur.
= Ziel: Kohasion hoch, Kopplung niedrig, Granularitat angemessen.
= Grundlage fur Wartbarkeit, Skalierbarkeit, Wiederverwendbarkeit.

Moderne Methoden

Klassische Metriken

Domain A Domain-Driven
L Domain B Design (DDD)
Granularitat
| : 1

Kopplung [j [j

Business
Capabilities

Graph-/Clustering-
Ansatze

Quelle: Bass et al. (2021); Evans (2003); Newman (2021)
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Business Process Alignment (BPA)

Motivation:

= Klassische Metriken (Kohasion, Kopplung, Granularitat) bewerten nur technische Aspekte.

= Morderne, service-orientierte Anwendungssystemen unterstitzen Geschaftsprozesse.

= Ziel: Architektur = technische Struktur + Prozessunterstutzung.

= (QOdoo Sales Prozess: Quotation = Order — Delivery = Invoice = Payment

= Zerlegung in Services wird anhand von BPA-Metriken bewertet.

BPA-Metriken:

Metrik

Basierend auf...

Bezug zur Literatur

Herleitung

PSC

BPMN-basierte Prozessmodellierung

Daoud et al. (2020); Delgado et al. (2018)

analog zu Code Coverage in der Softwarequalitat
(abgedeckte Schritte + alle Schritte)

analog zu Jaccard Similarity Index (Uberschneidung

(2018)

BCF  |Capability-Mapping und Domain-Driven Design  |Drieschner et al. (2023); Ozkan et al. (2025) zwischen Service und Capability)

C1S  |Change-Impact-Analysen in MSA Li et al. (2025); Ortiz et al. (2023) abgeleitet aus Change Propagation Metric
(betroffene Services + alle Services)

PCT |Distributed Tracing / End-to-End-Monitoring Hui et al. (2025); Taibi & Systa (2019) analog zu Traceability Coverage (vollstandig
nachverfolgte Instanzen =+ alle Instanzen)

PGC  |Ziel-Prozess-Abgleich (EA) Zimmermann et al. (2018); Delgado et al. abgeleitet aus Goal Alignment Metrics (gewichteter

Mittelwert aus Alignment-Scores)




Prazise Qualitatsanforderungen
BPA-Metrik (Process Step Coverage - PSC)

= Stimulus: Analyse eines Geschaftsprozesses (z. Berechnung Beispiel
B. Odoo Sales).

. . = Prozess hat 5 Schritte
= Environment: Modellbasierte Analyse (BPMN).

: , , , = 4 Schritte sind Services zugeordnet
= Artifact: Services, die Prozessschritte

implementieren. PSC — i = 0,8
= Response: Prozessschritte sind einem Service

zugeord net. beC — durchServicesabgedeckteProzessschritte 08
= Response Measure: Anteil abgedeckter alleProzessschritte

Prozessschritte. .
Interpretation

= PSC=1 — vollstandige Prozessabdeckung

= PSC< 1 — Prozesslucken oder implizite
_Logik

Quelle: Bass et al. 2021; ISO/IEC 25010



Ubung: Microservices & Business Process Alignment

Beispiel:

Odoo Sales Prozess: Quotation — Order — Delivery = Invoice = Payment
Zerlegung in Services wird anhand von BPA-Metriken bewertet.

Architekturen werden nicht nur technisch, sondern auch prozessual bewertet.
Klassische Metriken # Unterstitzung von Geschaftsprozessen.

In der Ubung:

= Zerlegung eines Systems in Services

= Bewertung mit technischen und BPA-Metriken

= Ziel: Architekturentscheidungen begriindet vergleichen

— Bonuspunkte flir saubere Modellierung und nachvollziehbare Argumentation
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Ausblick

= Softwarearchitektur ist keine einmalige Entscheidung, sondern ein kontinuierlicher
Gestaltungsprozess.

= Der Nutzen von Microservices hangt stark von Prozess- und Domanenbezug ab.

= Metriken helfen, Architekturentscheidungen transparent, vergleichbar und begriindbar
zU machen.

= Business Process Alignment gewinnt besonders bei ERP-, Plattform- und Legacy-
Migrationen an Bedeutung.

= In Forschung und Praxis: Bedarf an systematischen, prozessorientierten
Bewertungsansatzen.

Quelle: Ortiz et al. (2023)
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